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Background

* More than 1.5 Billion people, or 20% of the
global population suffer from hearing loss
(WHO). This number is expected to increase
to over 2.5 Billion by 2050.

* Between 12% and 15% of these cases are
caused by hidden hearing loss. That is over

200 million people.

* Hidden hearing loss not assessable by
conventional hearing tests.

e Additionally, it is especially dangerous due to
possible damage from “safe” sounds.

* Damage occurs in the form of atypical neuronal
activities in the auditory system of the brain.

Question: How can we quantify and detect

hidden hearing loss?
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Aims of the Project

1. Using rigorous statistical tests (upper panel) to reveal
that hidden hearing loss exists in the form of atypical
neuronal response.

2. Using machine Iearnin% techniques (lower panel) to
detect hidden hearing loss and decipher the specific
spectrum of amplitude and frequency for a clinical
diagnostics.

Contributions:

* The experimental data was collected by Ms. Wenyue Xue (a PhD student
in Dr. Jun Yan’s group).

* My contributions are the statistical and computational works achieving
the two Aims. Code and Software for the analysis are in my GitHub:
https://github.com/ZhoulLongCoding/sound waves
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https://github.com/ZhouLongCoding/sound_waves

Methods (1.1): Experiments & Data processing

Mouse experiments

a. A mouse is fixed on the bench, exposing to a pre-
specified pure-tone sound.

b. Pre- and post- the responses of auditory midbrain
neurons to sound stimuli are recorded by a specific
equipment and assessed via conventional methods.

c. Anenlarged view of the animal experiment scenario

Data Processing
1. Conversion from binary to texts
2.  Smoothing the data

In total, the input data configuration:
* 18 mice are experimented.

* 36 Amplitudes 21 frequencies, at 100 time points are
assessed for each mice at 2 conditions (pre- and post-)

* Total number of the data points = 2,721,600

00000000
00000010
00000020
*

00000060
00000070
*

00000090
00000000
000000b0
000000c0
000000d0
0000000
00000010
*

0000010
00000200
*

00000230
00000240
00000250
00000260
00000270

10 ec 04 00 63 00 6b 48
50 4b 64 00 6¢c 00 le 03
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 80 3f 00
00 80 3f 00 00 80 3f 00
00 80 3f 00 00 80 3f 00
00 80 3f 00 00 40 40 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00

00 00 00
00 00 00

Mouse pictures from Ms. Wenyue Xue, Dr. Jun Yan’s lab at the University of Calgary.
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## File Length = 325684

## Head Length = 99

## Frequency Unit = kHz

## Amplitude Unit = dB SPL

## Data-starting point in byte = 100
## Data type = SPK

# Data record length = 100

# Length of one record = 108

# Number of data set = 798
Frequency: 2.5 Amplitude: 79.3
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I\/Iethod (1 2) eature Extractlo ert

The Raw data after processing are deplcted 4D data (Neuronal F|r|ng Rate W|th
respect to three dimensions: Frequency, Amplitude, Time) in the Upper panel.
Different Time points are shown in a—h. In each sub-panel Frequency is shown in x-
axis, and Amplitude is shown in y-axis, the colour indicates strength of the neuronal
firing rate.

Feature extractions are conducted (Lower pane):
Frequency domain (fixing both Amplitude and Time)
* Best frequency, the Frequency with the highest firing rate (Lower panel a);

ati st|ca| Tests

(9]

*  Bandwidth, the frequency range that has firing-rate substantially differ from % %T %
zero (Lower panel b) e F‘\ i~ =
Amplitude domain (fixing both Frequency and Time) ;E ] :E t \ :E ]
* Threshold, the lowest response amplitude (Lower panel c); - 1 > = ——— L
* Dynamic range, the amplitude difference between lowest firing-rate and the Frequency Frequency Amplitude
turn point (after which the increase of firing-rate slows down), which is d e Af
approximately maximal the second derivative of the firing rate curve (Lower %T %f %
panel d); %:o Eo 'fo
* Slope of dynamic range, the distance in firing rate divided by the dynamic range = . = tan(6) ¢ L% lf\
described above (Lower panel e). .L|_>
Time domain (fixing both Frequency and Amplitude) Amplitude Amplitude , Time
* Latency, the time point when a response starts (Lower panel f); % f % T ,(;'; f
*  50% Duration, the period when firing rate is over 50% of the maximum firing- < A e A = f\
rate of each response (Lower panel g); £ o £ 20(8) =
* Rising slope, the slope from the 10% of the maximum firing-rate to the = : > = > o ==
maximum firing-rate (Lower panel h). Time Time Freq/Amp/Time
Noise/Signal Ratio to ((Lower panel i) for all the three domains.
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T-test and Trend-test (Upper-left panel, a
and b) are used to assess the significant
level of effects. Fisher method (Upper-left
panel, c) is used to combine multiple mice

experiments
from internet

SPictures illustrating tests

Significance level in T-tests (Right panel)
for five features.

The above features are illustrated as

contour graphs (Mid-left panel, a-d: pre-
exposure; e-h: poser exposure; a,e:
Amplitude Threshold; b,f: Time 50
duration; c.g: Time rising slope; d,h:
Amplitude Noise/Signal ratio)

The illustrated features are annotated
using physiological interpretations (Lower-
left panel, a — c) (Interpretation provided

by Dr. Jun Yan)
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Results 1: Hidden hearing loss exists! (Statistical Tests + Interpretations)
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Fake signals are fired in contrast
to genuine signals.

Unable to hear soft sounds

Insensitive to low signals.
However, overreaction to
loud sounds

Can hear; but non-existent
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Methods (Aim 2): Identifying specific spectrums for clinical tests

Goal:

Detect and identify specific amplitude
and frequency that best distinguish pre-
exposure and -post exposure.

The analytic pipeline:

Convolutional neural network is used to
train a classifier distinguishing pre- and
post-exposure using input data as
Images. This allows detection of hidden
hearing loss, which has been previously
impossible.

eXplainable Al (particularly GradCAM) is
used to identify the spectrums
(amplitude an freguency) that best
distinguish pre- and post exposures.

Overfitting control:

De-noising the input data
Cross-Validation
Early stopping

A: CNN
Input

Fully
Convolution Connected

Cat/Dog image from the GradCAM paper: Selvaraju et al., ICCV 2017
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Hyper—parameters & Trammg for Convolutl

onal

ﬁ\letwork conflguratlons\
« Kernel size = (3, 3)
* Pool size = (2,2)

 Dense layer number of
nodes = 128
/

Number of layers =3
/ammg parameters: \
* Epochs =20
« Batch Size = 12
* Optimizer = ‘adam’

* Learning rate = 0.001
 Kernel initializer =

KHeNormaI()

A

/I5ata processing:
* De-noise: Median filter

* Mean normalization:
X’ = (X — mean(X))/(max(X)-
\

min(X))
M)del summary

~

/

\

Layer (type) Output Shape Param #
convl (Conv2D) (None, 33, 19, 32) 320
MaxPoolingl (MaxPooling2D) (None, 16, 9, 32) 0

conv2 (Conv2D) (None, 14, 7, 64) 18496
MaxPooling2 (MaxPooling2D) (None, 7, 3, 64) 0

conv3 (Conv2D) (None, 5, 1, 128) 73856
flatten_4 (Flatten) (None, 640) 0

Dense (Dense) (None, 128) 82048
Output (Dense) (None, 2) 258
Total params: 174978 (683.51 KB)

Trainable params: 174978 (683.51 KB)
Non-trainable params: @ (0.00 Byte)
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Loss & Accuracy graphs:
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Predictive Accuracy & Overfitting Control
A

e Data in Time point 0-9 and 50-99 are known
(biologically) to be noisy.

* | used this prior knowledge to analyze
potential overfitting in the training process
and select the best model

* First, when trains all data jointly, the accuracy
in the range of T=10 to T=49 indeed are
better (Panel A).

* Second, when trained individually, the
advantage of T=10 to T=49 are more
pronounced (Panel B).

* Third, when analyzing the data jointly for
T=10 to T=49 (Panel C) and T=0to T=9 and
T=50 to T=99 (Panel D), the performance of
T=10 to T=49 are way better, replicating the
patterns observed in Panels A and B.

* The above observation shows that the model
is no overfitting (because of the poor data
serve as controls) and we should use only
T=10 to T=49 for further discoveries.

..............

FFFFFFFFFF

a0
Dﬂ
o

FFFFFFFFFF

1 March 2024 Zhou Long: Deciphering hidden hearing loss using statistical & machine learning

Page 9 of 12



Results 2: eXplainable Al (GradCAM) reveals the final spectrum

GradCAM generates weights specifying importance of each spots on the image, which are aggregated to lead the final outcome:

For a potential clinic test, The best range and spectrum is Amp = 46-70 dB, Freq = 8.7-13.2 KHz (with respect to the specific exposure)
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Features Neuronal Response |Practical Problem
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Hidden hearing loss is significant and can be caused by
safe sounds, shown by the statistical tests (Results 1)

* Trained a convolutional neural network to detect hidden
A |- hearing loss exists in a sample.

T =Y t;(NiiRy — Nai Ry)
i=1

Fully | * |dentified the specific range of Amplitude/Frequency
e that is the most informative in distinguishing pre- and

post-exposure, laying the path for clinical tests. (Results
2)

B: GradCAM
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